Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons.

نویسندگان

  • Ling Lin
  • Yi Rao
  • Ole Isacson
چکیده

We investigated the roles of netrin-1 and slit-2 in regulation and navigation of dopamine (DA) axon growth using an explant culture preparation of embryonic ventral midbrain (embryonic day 14) and a co-culture system. We found that netrin-1 protein significantly enhanced DA axonal outgrowth and promoted DA axonal outgrowth in a co-culture system of netrin-1 expressing cells. Such effects were mediated by the receptor DCC as demonstrated by antibody perturbation of the DCC receptor. In contrast, slit-2 inhibited DA neuron extensions and repelled DA neurite growth. These slit-2 activities required robo receptors since the reduced neurite extension was abolished by addition of excess robo receptors. In this system, netrin-1 stimulated and slit-2 opposed DA neurite growth. Such regulation may be important for DA axonal maintenance, regeneration, and phenotypic target recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons.

Dopaminergic neurons derived from human embryonic stem cells will be useful in future transplantation studies of Parkinson's disease patients. As newly generated neurons must integrate and reconnect with host cells, the ability of hESC-derived neurons to respond to axon guidance cues will be critical. Both Netrin-1 and Slit-2 guide rodent embryonic dopaminergic (DA) neurons in vitro and in vivo...

متن کامل

Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits.

The physical restoration of dopamine circuits damaged or lost in Parkinson disease by implanting embryonic stem (ES)-derived cells may become a treatment. It is critical to understand responses of ES-derived dopamine (DA) neurons to guidance signals that determine axonal path and targeting. Using a collagen gel culture system, we examined effects of secreted molecules Netrin-1 and Slits on neur...

متن کامل

Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain.

Fibroblast growth factors (FGFs) secreted from the midbrain-rhombomere 1 (r1) boundary instruct cell behavior in the surrounding neuroectoderm. For example, a combination of FGF and sonic hedgehog (SHH) can induce the development of the midbrain dopaminergic neurons, but the mechanisms behind the action and integration of these signals are unclear. We studied how FGF receptors (FGFRs) regulate ...

متن کامل

Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.

During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are prim...

متن کامل

Desire, disease, and the origins of the dopaminergic system.

The dopaminergic neurons in the midbrain region of the central nervous system project an extensive network of connections throughout the forebrain, including the neocortex. The midbrain-forebrain dopaminergic circuits are thought to regulate a diverse set of behaviors, from the control of movement to modulation of cognition and desire--because they relate to mood, attention, reward, and addicti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2005